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Successful fisheries management practices developed for one ecosystem can often be used in similar ecosystems. We developed 
a flexible lake classification framework in collaboration with ~100 fisheries biologists for improved fisheries conservation man-
agement in Wisconsin, USA. In total, 5,950 lakes were classified into 15 lake classes using a two-tiered approach. In tier-one, lakes 
were clustered into “simple” and “complex” sportfish assemblages. In tier-two, lakes were further clustered using accumulated 
degree days, water clarity, and special cases. We focus on temperature and clarity because these factors often drive fisheries 
change over time—thus a lake’s class can change over time. Lake class assignments were refined through a vetting process where 
fisheries biologists with expert knowledge provided feedback. Relative abundance, size-structure, and growth rates of fishes 
varied significantly across classes. Biologists are encouraged to utilize class interquartile ranges in fisheries metrics to make 
improved fisheries assessments. We highlight hard-won lessons from our effort including: (1) the importance of co-developing 
classification frameworks alongside fisheries biologists; and (2) encouraging frameworks where lakes can shift classes and fisher-
ies expectations over time due to factors like climate change and eutrophication.

INTRODUCTION
Ecosystem classification frameworks often represent a key 

step towards stronger fisheries management (Moyle 1949; 
Moyle and Ellison 1991; Schupp 1992; Wehrly et  al. 2012). 
For lakes in particular, there is dramatic diversity in the phys-
ical, chemical, and biological attributes of these ecosystems 
over landscapes (Mcdonald et al. 2012; Verpoorter et al. 2014; 
Oliver et al. 2016). Correspondingly, lake fisheries also express 
wide spatial heterogeneity in virtually all fisheries metrics 
(Eadie and Keast 1984; Lester et al. 2003; Rypel and David 
2017). Lake classification frameworks are foundational for 
lake fisheries management because they simplify this high de-
gree of landscape complexity, allow better “apples-to-apples” 
comparisons, and thus encourage more direct evaluations of 
fisheries data (Austen and Bayley 1993; Kelly et al. 2012; Olin 
et  al. 2013). Lake classification also fosters communication 
among stakeholders and policy makers by forming a common 
ecological language that can be used to focus resource man-
agement dialogue (Howard and Larson 1985; Mumby and 
Harborne 1999).

While lake classification has been foundational for fisher-
ies management, some frameworks have fallen short by being 
based exclusively on static variables that do not change over 
time (e.g., lake size, depth, and landscape position). Temporal 
environmental change is an essential element that has been 
not been integrated into many lake classification frameworks 
(but see Wehrly et al. 2012). The vast majority of lake classi-
fication systems rely on static landscape variables that cannot 
change over time such as lake area, lake depth, and landscape 
position. Thus as lakes change over time (e.g., due to human 
domination of ecosystems; Vitousek et  al. 1997; Carpenter 
et al. 2017), lake classes cannot change. Wehrly et al. (2012) 
recently recognized that fish assemblages in lakes are large-
ly governed by lake thermal regime, and that a modern lake 
classification system should incorporate temperature and po-
tential consequences of climate change in particular. Parallel 
work in stream fisheries has also recognized and integrated 
this need (Lyons et al. 2010; Myers et al. 2018). In this study, 
we build on these conceptual advances by forging a flexible 
lake classification system for Wisconsin lakes (i.e., one that 
allows lakes to change classes over time) for use in conser-
vation management of inland Wisconsin fisheries. We stress 
several key lessons from our work including: (1) statistical 
classification based on ecological variables that can change 
over time, thereby allowing a lake’s class to change over time; 
(2) the importance of collaborating with fisheries biologists 
(i.e., the end users of the system) to better refine the product 
and build internal support for its use; and (3) having the end 
goal of developing a model that will be immediately useable 
by managers.

METHODS
Data

The Wisconsin Lakes dataset (Supplementary Dataset 1) 
describes presence–absence of nine groups of sportfish spe-
cies in all Wisconsin lakes > 8 ha (Wisconsin Department of 
Natural Resources 2009). The dataset included information 
on Muskellunge Esox masquinongy, Northern Pike E. lu-
cius, Walleye Sander vitreus, Largemouth Bass Micropterus 
salmoides, Smallmouth Bass M. dolomieu, catfish—inclu-
sive of primarily Channel Catfish Ictalurus punctatus but 
occasionally Flathead Catfish Pylodictis olivaris—trout—
inclusive of Brook Trout Salvelinus fontinalis, Rainbow Trout 
Oncorhynchus mykiss, and Brown Trout Salmo trutta—Lake 
Sturgeon Acipenser fulvescens, and panfish—Inclusive of pri-
marily Bluegill Lepomis macrochirus, Black Crappie Pomoxis 
nigromaculatus and Yellow Perch Perca flavescens, but po-
tentially other species like bullheads Ameiurus spp., Green 
Sunfish L. cyanellus, Pumpkinseed L. gibbosus and Rock Bass 
Ambloplites rupestris. Data were originally assembled by bi-
ologists in the 1950s and 1960s, but these data were updated 
for this project using direct input from current local fisheries 
biologists.

Primary physical characteristics for each lake were based 
on data in the Wisconsin Register of  Waterbodies (ROW) 
database (Supplemental Dataset 2). The ROW database 
included estimates of  lake area (ha), maximum depth (m), 
watershed area, and latitude-longitude for almost every 
lake of  interest. Hydrologic residence time data for 2,052 
lakes (Supplementary Dataset 3) were derived from anoth-
er Wisconsin Department of  Natural Resources (WDNR) 
project on total maximum daily load standards for phospho-
rus in Wisconsin lakes (http://dnr.wi.gov/topic/surfacewater/
models.html).

Lake temperature estimates were based on recent modeling 
efforts for Wisconsin lakes (Winslow et al. 2015, 2017; Hansen 
et al. 2017). Modeling focused on ~2,100 Wisconsin lakes with 
a history of active fish management. Daily lake temperature 
profiles were re-created for 1980–2014 using a general, open 
source lake model (Hipsey et al. 2013). Ultimately, modeled 
epilimnetic temperature data were converted to accumu-
lated annual degree days (DD) using a base value of 10°C 
(Supplementary Dataset 4). A 10°C base value has been previ-
ously suggested as a standard base value for studies on diverse 
temperate fishes (Venturelli et  al. 2010; Rypel 2012; Chezik 
et al. 2014). Mean annual temperature and DD values were 
averaged across available years to approximate average annual 
thermal conditions in each lake.

Lake clarity data were derived from remotely sensed 
lake Secchi depth estimates (2003–2012). These data are 
more thoroughly described in previous studies (Wisconsin 

http://dnr.wi.gov/topic/surfacewater/models.html
http://dnr.wi.gov/topic/surfacewater/models.html
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Department of  Natural Resources 2014; Rose et al. 2017), 
and ultimately included water clarity estimates for 8,132 
Wisconsin lakes derived from Landsat satellite data. 
Consistent with previous work (Olmanson et al. 2008), wa-
ter clarity estimates were restricted to the months of  June–
September. As with temperature and DD estimates, data 
were averaged across years to approximate average clarity 
conditions for each lake (Supplementary Datasets 5, 6).

Lake classification
Philosophy and general approach

Our classification approach required quantitative analyses 
and a work flow that could accommodate divergent data forms 
and feedback loops from professional biologists. For example, 
fish community data were binomial whereas other fisheries 
and limnological data were continuous. Furthermore, from 
our outreach efforts with fisheries managers and biologists, 
we learned that there was desire for an easy-to-understand 
system with a reasonable number of classes (preferably <20). 
We developed an intuitive two-tiered classification system that 
used all available data, but also maximized flexibility, i.e., in-
corporated the ability for lakes to change classes over time. 
Flexibility also encompasses an ability to adjust the classifica-
tion of a lake to a more appropriate class based on manager 
knowledge and other new information not included in initial 
statistical analyses. Our workflow (Figure  1) incorporated 
extensive interactions with the end users of our tool. This 
process allowed for multiple loops with users, including op-
portunities for feedback and flexibility in classifications based 
on expert judgement.

Tier-­one classification
Lakes were initially clustered using a k-means cluster 

analysis of presence–absence data of nine primary sportfish 
species from the Wisconsin lakes book dataset (Figures 1, 2; 
Supplementary Dataset 1; Wisconsin Department of Natural 
Resources 2009). K-means cluster analysis seeks to partition 
available observations into either a predefined or an undefined 
number of central tendencies based on user choice (Hartigan 
and Wong 1979). Ultimately, all observations belong to specif-
ic clusters with nearest central tendencies. Our initial k-means 
analysis resulted in six preliminary clusters. Based on biologist 

feedback, these clusters were re-organized into two new tier-
one clusters: “simple” and “complex” sportfish communities 
(Figure 2). Simple sportfish communities were those defined 
as having  fewer than  three sportfish species groups and no 
Walleye. Complex sportfish communities were those defined 
as having  more than  four sportfish species; all Walleye and 
most Muskellunge lakes were in this cluster.

Tier-­two classification
Two new k-means cluster analyses were performed on all 

members of the simple and complex tier-one clusters using DD 
and Secchi depth data (Figure 2). All DD and Secchi depth 
data were normalized and centered using an n − 1 transforma-
tion (Bradley and Fayyad 1998). In both cluster analyses, the 
number of terminal clusters was pre-defined at four to system-
atically produce combinations of water temperature and clarity 
characteristics (Figure 3). Once the clusters had been defined, 
lakes without temperature data were added to the warm classes 
(the most abundant thermal class) with their clarity class mem-
bership determined by Secchi depth data (available for almost 
all lakes). Finally, we identified transitional members of tem-
perature and clarity classes as those lakes having the upper or 
lower 5% of DD or mean Secchi values (Figure 3).

Special cases
We identified several unique lake types a priori through lake 

lists already used in existing laws or policies. In Wisconsin, 
“two-story lakes” receive additional protection in the form of 
more stringent phosphorus water quality standards. Two-story 
lakes are deep stratified lakes with sufficient oxythermal habi-
tat to support both warmwater and coldwater fisheries (Lyons 
et al. 2017a; Parks and Rypel 2018). Two-story lakes were in-
cluded in the tier-one cluster analysis, therefore, we combined 
results from that analysis with the existing two-story list to 
produce two terminal lake classes termed “simple–two-story,” 
and “complex–two-story” lakes. We identified riverine lakes a 
priori as those with brief  hydrologic retention times (<15 d). 
This value is already used to define riverine lakes for existing 
phosphorus water quality standards. Again, we used the tier-
one classification to first identify simple and complex lakes 
and, subsequently, “simple–riverine” and “complex–riverine” 
lakes.

Figure 1. Workflow documenting iterative and collaborative development of lake classification system.
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Wisconsin also has a unique set of shallow coldwater 
lakes locally referred to as “spring ponds” (Carline 1980). 
These lakes are very small (typically <5 ha), and sourced by 
groundwater within and outside the catchment (Carline 1977). 
Spring ponds support naturally reproducing and stocked 
Brook Trout, Brown Trout, and Rainbow Trout populations. 
An updated list of spring ponds was developed by way of this 
study; however, this list remains a work in progress because of 
the large number of small and private ponds with limited to 
no access. It was also evident from our initial tier-one cluster 

analysis that one cluster incorporated most of the spring 
ponds. However, this same cluster also included small im-
poundments on trout streams that supported simple fish com-
munities dominated by trout. Therefore, we retained Cluster 3 
as a terminal lake class that incorporated both spring ponds 
and small impoundments on trout streams. This lake class was 
renamed “simple–trout ponds,” which we now define as small, 
shallow lakes with sufficient coldwater habitats to support 
trout fisheries. Example photos of all lake classes are present-
ed in Figure 4.

Figure 3. Example lakes for each of the 15 lakes classes. All photos by the first author with the exception of 1, 5, 6, 7, 11, 12, 13; 
source: Wikimedia Commons: https://commons.wikimedia.org/wiki/Main_Page

4) Simple – Warm – Dark
Ennis Lake, Marque�e Co.

14) Complex - Riverine
Mud Lake, Dodge Co.

10) Complex – Cool - Clear
Escanaba Lake, Vilas Co.

6) Simple – Trout Pond
Flora Lake, Langlade Co.

1) Simple – Cool – Clear
Fanny Lake, Oconto Co.

7) Simple – Two-Story
Perch Lake, Bayfield Co.

12) Complex – Warm – Clear
Shell Lake, Washburn Co.

13) Complex – Warm – Dark
Pewaukee Lake, Waukesha Co.

11) Complex – Cool – Dark
Chippewa Lake, Sawyer Co.

5) Simple – Riverine
Mill Pond Lake, Milwaukee Co.

3) Simple – Warm – Clear
Peterson Lake, Burne� Co.

8) Simple – Harsh – Has Fishery
Crystal Lake, Burne� Co.

2) Simple – Cool – Dark
Green Lake, Burne� Co.

9) Simple – Harsh – No Fishery
Trout Bog, Vilas Co.

15) Complex – Two-Story
Lake Mendota, Dane Co.

Figure 2. Two-tiered approach leading to 15 terminal lake classes for 5,951 Wisconsin lakes. RT = “hydrologic retention time”.
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Iteration and vetting
Our approach to lake classification was collaborative with 

fisheries biologists and managers, and involved multiple iter-
ations based on feedback from more than 100 professional 
fisheries biologists (Figure  1). Feedback was solicited using 
presentations at internal staff  meetings, active forums on the 
topic, an ad hoc working group, online presentations, and 
email. Biologist recommendations were recorded, and recom-
mendations evaluated for a final determination by an ad hoc 
team (Supplementary Datasets 7, 8).

Class predictions
For the eight temperature and water clarity classes, we con-

ducted discriminate function analyses (DFA) to estimate classi-
fication success and generate model coefficients for future lake 
class assignments (Supplementary Table S1; Supplementary 
Datasets 4, 6). In all DFAs, data were not standardized and 
centered to simplify future classification predictions; however, 
data were log10-transformed to meet traditional DFA assump-
tions of normality. Significance of models were assessed using 
Wilks’ Lambda test (Rao’s approximation). Classification suc-
cess was evaluated using crossvalidation where observations 
were reclassified according to model coefficients and probabil-
ities determined through Bayes formula.

Fisheries standards for each lake class
Standards for each of three major fisheries statistics (relative 

abundance, size-structure, and growth) were calculated from 
data archived in our statewide fisheries management database 
(Rypel et al. 2016). To account for catch biases, we only exam-
ined data collected using pre-defined gear types used in specific 
seasons (Table 1).

For relative abundance, catch per unit effort (CPUE) for 
each species in each lake and lake-year combination was cal-
culated. Zero catches of a species in a survey year were not in-
cluded in our calculations because zero catches were not noted 
for most species and there is no known way to extract zero 
catches. However, CPUE calculations were integrated across 

all gear types in a single survey year combination. Median and 
interquartile ranges of CPUE values were calculated across 
lake averages for a class.

Lake-class standards for fish sizestructure were calculat-
ed using a combination of mean and mean maximum size 
(Rypel 2015; Rypel et  al. 2016). For each lake and survey 
year combination, mean total length was calculated by spe-
cies. Subsequently, a mean of means was calculated across 
all available years for a single lake (Beard and Kampa 1999; 
Rypel et al. 2016). Finally, a median and interquartile range 
of mean total length was calculated for each species across all 
lakes in a given class. An analogous procedure was conducted 
for mean maximum size (i.e., mean of the five largest fish in 
a survey year) (Rypel 2015; Rypel et al. 2016). We tested for 
significant lake class differences in abundance and size metrics 
using mixed effects models. In each model, the fishery metric 
of interest was the response variable, lake class was a categor-
ical variable, and individual lakes (because of pseudo repli-
cation) were random effects (Supplementary Datasets 14–16).

Growth data were composed of length-at-age estimates 
from calcified structures removed and processed from target 
species. In general, sectioned spines or fin rays were used to es-
timate ages from larger Walleye and Muskellunge while scales 
were used to estimate ages from small individuals. Scales were 
used to generate age estimates for most other species. We rec-
ognize that for most species age data from scales are often in-
ferior to that from otoliths or spines (Isermann et  al. 2003; 
Maceina et al. 2007; Oele et al. 2015). Therefore, we do not 
intend to imply these data represent absolute age and growth 
estimates rather patterns from available data. Length-at-age 
data were processed in the following way: A total of 10 fish 
age estimates per species needed to be available in a lake-year 
combination. Further, at least five age classes needed to be 
present across all age estimations for the same lake-year com-
bination. A mean length-at-age was calculated for each species 
in each lake-year combination. Using these data, growth rates 
standards for each lake class were estimated using the von 
Bertalanffy growth function:

Figure 4. K-means cluster analysis of accumulated degree days (DD) and Secchi depth data from simple and complex sportfish 
communities. Transitional lakes were identified as those with the highest or lowest 5% of DD or Secchi values. Red filled circles = 
warm dark lakes, blue filled circles = cool dark lakes, orange open circles = warm clear lakes, blue open circles = cool clear lakes, 
gray filled circles = clarity transitional lakes, purple filled circles = temperature transitional lakes.
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where Lt is the total length at time t, L∞ is the average max-
imum or asymptotic length, k is a growth rate constant, 
and t0 is the theoretical age-at-length zero. To account for 
low sample sizes in some lake classes, a re-sampling proce-
dure was conducted that produced 1,000 new length-at-age 
datasets for each lake class, followed by 1,000 estimates of 
each von Bertalanffy growth parameter (Mooij et  al. 1999; 
Welsford and Lyle 2005). Class medians and interquartile 
ranges for von Bertalanffy growth curve parameters were 
based on bootstrapped von Bertalanffy growth function data 
(Supplementary Datasets 9, 10). Because of  potential uncer-
tainty in age estimation precision, we do not present signif-
icant differences in growth rates across size classes, but still 
present lake class medians and interquartile ranges for illus-
tration of general patterns using available data. All classifica-
tion analyses were conducted using SAS statistical software 
(Version 9.4, SAS Institute Inc., Cary, North Carolina, USA); 
growth (including bootstrapping), size, and CPUE lake class 
standards for fisheries data were computed in R (R Core 
Team 2015).

RESULTS
A total of 5,950 Wisconsin lakes were placed into the 15 

lake classes (Figures 2, 3). We received suggestions from biolo-
gists on ~10% of the 5,950 lakes. Comments were wide-ranging, 
but were mostly of the following types: (1) the lake should be 
riverine—usually because the lake was either a millpond or a 
floodplain lake and not included in our retention time dataset; 
(2) the lake should be simple when it was classified as complex 
or vice versa; (3) the biologist had a strong inclination or data 
suggesting the lake should be cool when classified as warm or 
vice versa, or classified as clear when dark or vice versa; (4) 
observations on the periodicity of winterkill.

The three most common lake types, by number, were 
simple–warm–dark, simple–harsh–no fishery, and simple–
harsh has fishery (Tables 2, 3; Figure 5). By total lake area, the 
top three lake classes were complex–warm–dark, complex–
two-story, and complex–cool–dark (Table  2). Classification 
success in DFA was 90% for simple lakes and 94% for 

complex lakes. There were geographic patterns in the distribu-
tion of certain lake classes. Cool lakes were located primarily 
in northern Wisconsin, and simple trout ponds were concen-
trated in east–central and northwestern Wisconsin (Figure 5). 
Lake classes expressed critical differences in physical and 
chemical characteristics. Two-story lakes were deep; complex 
riverine lakes had large watershed areas and fast retention 
times; warm lakes had high DD; clear lakes (whether sim-
ple, complex, warm, or cool) showed increased water clarity 
(Figure 6).

Fisheries statistics varied significantly and in interest-
ing ways across classes (Figure  7; Supplementary Datasets 
11–16; all mixed effect models P  <  0.0001). We extracted 
a small subset of  our results from key sportfish species to 
demonstrate some of  the interesting patterns observed. 
For example, Walleye had the highest CPUEs in cool lakes 

(1)Lt =L∞

[

1−e−k(t−t0)
]

Table 2. Summary of numerical and area contributions across classes 
for 5,950 Wisconsin lakes.

Lake Class

Number Area (ha)

Total % Total %

Complex–Cool–Clear 232 4 19,363 5

Complex–Cool–Dark 240 4 48,961 13

Complex–Riverine 183 3 43,244 11

Complex–Two–Story 146 2 55,323 14

Complex–Warm–Clear 199 3 13,271 3

Complex–Warm–Dark 198 3 119,665 31

Simple–Cool–Clear 419 7 8,244 2

Simple–Cool–Dark 209 3 8,088 2

Simple–Harsh–Has Fishery 613 10 10,462 3

Simple–Harsh–No Fishery 1,059 18 11,676 3

Simple–Riverine 175 3 7,129 2

Simple–Trout Pond 308 5 935 0

Simple–Two-Story 58 1 1,865 0

Simple–Warm–Clear 261 4 8,785 2

Simple–Warm–Dark 1,650 28 24,661 6

Total 5,950 100 381,672 100

Table 1. Standardized sampling protocol for fisheries data standards by lake class.

Common Name Scientific Name Gear Time of Collection

Black Bullhead Ameiurus melas Fyke Nets April–May

Black Crappie Pomoxis nigromaculatus Fyke Nets April–May

Bluegill Lepomis macrochirus Shoreline Boat Electrofishing May–June

Common Carp Cyprinus carpio Shoreline Boat Electrofishing May–June

Largemouth Bass Micropterus salmoides Shoreline Boat Electrofishing May–June

Muskellunge Esox masquinongy Fyke Nets April–May

Northern Pike E. lucius Fyke Nets April–May

Pumpkinseed L. gibbosus Shoreline Boat Electrofishing May–June

Rock Bass Ambloplites rupestris Shoreline Boat Electrofishing May–June

Smallmouth Bass M. dolomieu Shoreline Boat Electrofishing May–June

Walleye Sander vitreus Fyke Nets April–May

White Sucker Catostomus commersonii Fyke Nets April–May

Yellow Bullhead A. natalis Fyke Nets April–May

Yellow Perch Perca flavescens Fyke Nets April–May
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and lowest CPUEs in warm lakes (Figure  7). In contrast, 
Largemouth Bass CPUEs were highest in warm clear lakes 
(Figure 7); lower in warm–dark lakes and lowest in cool lakes 
and riverine lakes. Yellow Perch had high CPUEs in cool–
dark lakes. Both Northern Pike and Muskellunge had the 
greatest mean and maximum lengths in complex–cool–dark 
lakes (Supplementary Datasets 12, 13). And while CPUE of 
Largemouth Bass and Bluegill was usually higher in warm 
lake classes, mean and mean maximum size was higher in 
cool lakes.

DISCUSSION
Successful fisheries management approaches in one lake 

are often transferable to similar lakes (Moyle 1949; Tonn 
et al. 1983; Schupp 1992; Shuter et al. 1998). Yet identifying 
lakes sufficiently similar in terms of factors relevant to fisher-
ies, is often a difficult step. We developed a lake classification 
system that placed 5,950 Wisconsin lakes into 15 lake classes 
with the goal of  improving fisheries management. Below, we 
discuss potential uses, general patterns, and heuristic themes 
from our work that might aid others interested in a similar 
approach.

Key patterns were uncovered in the relative abundance,  
sizestructure and growth rates of focal fish species. For 

example, Walleye were uniformly more abundant in cool lakes 
(and were most abundant in two-story lakes), a pattern con-
sistent with other research on the species (Jobling 1981; Van 
Zuiden and Sharma 2016; Hansen et  al. 2017; Rypel et  al. 
2018). Unlike previous research (Ryder 1977; Lester et  al. 
2004), water clarity was not a major driver of Walleye abun-
dance patterns within cool lakes. In contrast, Largemouth 
Bass showed the highest abundances in warm lakes, especial-
ly warm–clear lakes. These results also align with previous 
research characterizing the species as best suited for warm, 
clear-water habitats (Rypel 2009; Hansen et al. 2017).

Panfish populations have historically been passively man-
aged in Wisconsin (Beard and Kampa 1999; Rypel 2015; Rypel 
et al. 2016). However, there is increasing interest in novel ways 
to manage panfish species for sustainability and yield (Lyons 
et  al. 2017b). Our lake classification system provides a tool 
that could be used for panfish management. Black Crappie 
were most abundant in dark lakes whether cool or warm; 
Bluegill, were more abundant in warm and clear lakes; Yellow 
Perch abundance was highest in complex–cool–dark lakes. Yet 
maximum size for Black Crappie and Bluegill was highest in 
complex–cool–clear lakes. Yellow Perch had highest maxi-
mum size in riverine ecosystems. These results may point to 
lake types more or less amenable to special regulations aimed 

Table 3. Brief description of the 15 lake classes.

Lake Class

DescriptionNo. Name

1 Complex–Cool–Clear ≥4 sportfish species, low DD, high secchi, low in landscape, these lakes are found primarily in the 
north, Walleye are an indicator species, Smallmouth Bass can be in high abundance.

2 Complex–Cool–Dark ≥4 sportfish species, low DDs, low secchi, low in landscape, these lakes are found primarily in the 
north, Walleye are an indicator species, Yellow Perch can be in abundance, can develop quality North-
ern Pike and/or Muskellunge size structure.

3 Complex–Riverine ≥4 sportfish species, <15 d hydrologic retention time, large watershed areas, often a low secchi, Wall-
eye and other riverine taxa are indicator species, common carp often present.

4 Complex–Two-Story ≥4 sportfish species, large lake area, deep, cold and oxygenated hypolimnetic habitats support 
coldwater fishes - primarily Cisco, managed differently for phosphorus water quality standards, low in 
landscape, can develop quality Walleye size structure.

5 Complex–Warm–Clear ≥4 sportfish species, high DD, high secchi, low in landscape, Walleye are an indicator species, Large-
mouth Bass and Bluegill are in high abundance.

6 Complex–Warm–Dark ≥4 sportfish species, high DD, low secchi, low in landscape, Walleye are an indicator species, Black 
Crappie can be in abundance, can develop quality Northern Pike and/or Muskellunge size structure.

7 Simple–Cool–Clear ≤3 sportfish species, small lake area, high DD, high secchi, high in landscape, these lakes are found 
primarily in the north, no Walleye, can develop high numbers of Smallmouth Bass.

8 Simple–Cool–Dark ≤3 sportfish species, small lake area, high DD, low secchi, high in landscape, these lakes are found 
primarily in the north, no Walleye, can develop high numbers of Black Crappie.

9 Simple–Harsh–Has 
Fishery

Usually only 1–2 sportfish species, very small lake areas, high in landscape, relatively frequent winter-
kill, can be dominated by bullheads.

10 Simple–Harsh–No 
Fishery

Usually no sportfish species present, very small lake areas, high in landscape, frequent winterkills 
or extremely low pH that prevents most fish populations from persisting. When fishes are present, 
Central Mudminnow Umbra limi and potentially other small-bodied Cyprinidae species dominate.

11 Simple–Riverine ≤3 sportfish species, <15 d hydrologic retention time, small lake area, high DD, small millponds on 
warmwater streams typify class.

12 Simple–Trout Pond Shallow, small lake area, groundwater flows reduce water temperatures to support trout fisheries, 
“spring ponds,” these lakes are common in Langlade (epicenter), Menominee, Forest, Shawano, Octon-
to and Lincoln Counties.

13 Simple–Two-Story ≤3 sportfish species, small lake area, deep, cold and oxygenated hypolimnetic habitats support cold-
water fishes, managed differently for phosphorus water quality standards, high in landscape.

14 Simple–Warm–Clear ≤3 sportfish species, small lake area, high DD, high secchi, high in landscape, no Walleye, Largemouth 
Bass and Bluegill frequently in high abundance.

15 Simple–Warm–Dark ≤3 sportfish species, small lake area, high DD, low secchi, high in landscape, no Walleye, can develop 
high numbers of Black Crappie.
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at improving size (Hansen et al. 2015; Rypel 2015; Lyons et al. 
2017b) or other efforts like in-lake habitat improvement (Sass 
et al. 2017).

There were intriguing patterns for several non-game species. 
For example, White Sucker Catostomus commersonii were most 
abundant in cool–clear lakes (Figure 7A). Even though White 
Sucker are cosmopolitan in Wisconsin lakes (Becker 1983), lit-
tle research has been conducted on their ecology, role in food 
webs, and importance to consumption fish production. Because 
they are apparently a cool water fish with higher abundance in 
cool lakes, White Suckers could be vulnerable to climate change 
effects (Eaton and Scheller 1996; Lyons et al. 2010). In an anal-
ysis of fish vulnerabilities to climate change, Lyons et al. (2010) 
projected a 20–80% decline in stream and river distributions of 
White Sucker in Wisconsin depending on warming magnitude. 

White Sucker may also be sensitive to other human impacts 
like reductions in water quality (Jobling 1981; Munkittrick and 
Dixon 1989). This classification system could be used as an or-
ganizing framework for investigating the distribution and ecol-
ogy of sentinel fishes like White Sucker in lakes.

Fisheries managers can use this lake classification infor-
mation to make improved fisheries assessments. As just one 
example, an early summer electrofishing survey for bass and 
panfish was recently conducted in Ennis Lake, Marquette 
County. Ennis Lake (pictured in Figure 4) is an 11.7 ha lake, 
and the childhood lake of famous naturalist John Muir, al-
though the lake and its name trace back to Native American 
culture. This lake was classified as simple–warm–dark 
(Supplementary Dataset 8). Median CPUE for Bluegill in this 
class is 98 fish/h with an interquartile range of 38–184 fish/h 

Figure 5. Distribution of 15 terminal lake classes in Wisconsin.
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(Supplementary Dataset 11). Median Largemouth Bass 
CPUE in this class is 31 fish/h with an interquartile range of 
13–52 fish/h (Supplementary Dataset 11). In the survey, ob-
served CPUE for Bluegill was 105 fish/h, a value is well with-
in the computed interquartile range. We strongly recommend 
survey data for a given lake be compared more generally to the 
class interquartile range standard (for CPUE or size) and not 
the class median. Thus, based on available data, Bluegill abun-
dance in Ennis Lake could be considered average. However, 
Largemouth Bass CPUE was only 9 fish/h. This value is be-
low the interquartile range (10th percentile). A biologist might 
ask themselves questions about this result. For example, why 
might the Largemouth Bass population be low? Do I want to 
do anything about it? Is there harvest pressure? Is there a hab-
itat issue?

We designed a flexible lake classification system, meaning 
that lakes may move among classes as lake conditions and fish-
eries change with time. This is important because as the ecolo-
gy of lakes changes, fisheries expectations frequently also shift 
(Molden et al. 2010; Sass et al. 2017; Rypel et al. 2018). Indeed, 
lakes can even operate under alternative stable states in that 
ecological change is often slow until a threshold is reached 
after which changes are rapid and major and reversal is slow 
and difficult (Carpenter et al. 2001). Common Carp Cyprinus 
carpio are an example of a fish species, that on its own, can 
“flip” a lake from a clear to dark water state (Weber and Brown 
2009; Bajer et al. 2012). As lake clarity becomes drastically re-
duced, fishery expectations may change (Cahn 1929; Forester 
and Lawrence 1978; Wahab et al. 1995). Given that our clas-
sification accuracy from the DFA was 90–94%, we anticipate 
that future classification efforts would be statistically robust.

Climate change in particular is rapidly changing the fisher-
ies ecology of lakes in Wisconsin and elsewhere (Lynch et al. 
2016; Winfield et al. 2016; Hansen et al. 2017). The dynamics 
of fish populations and communities are strongly regulated 
by temperature; thus, climate change is rapidly re-organizing 
fisheries (Tonn 1990; Lyons et  al. 2010; Magee et  al. 2018; 
Myers et  al. 2018; Rypel et  al. 2018). Recruitment rates of 
Walleye and abundances of Largemouth Bass in Wisconsin 
lakes are strongly predicted by temperature but in opposite 
directions (Hansen et al. 2017). Body size of freshwater fishes 
is also strongly related to temperature (Rypel 2013), and one 
potential effect of climate change on fishes could be a reduc-
tion in the maximum size potential of cool and coldwater fish 
(Cheung et al. 2013; Rypel 2013). Because our lake classifica-
tion system accounts for temperature, lakes will change classi-
fications over time, and fisheries managers will have a tool for 
adapting to climate change.

Some lakes may have already crossed tipping points. Walleye 
data from four lakes classified as temperature transitional are 
presented in Figure 8. These lakes were the only lakes classi-
fied as temperature transitional lakes that also had ≥ 5 years 
of Walleye data. Three of these four lakes also had concurrent 
time series of Largemouth Bass relative abundance data. An 
additional bass time series representing the longest available 
bass abundance time series in a temperature transitional lake is 
also presented. We observed a general decline in the abundance 
of Walleye along with an increase in Largemouth Bass, which 
is consistent with an expectation of thermal change over time 
as might be predicted with past and future climate change.

Collaborative development of  our lake classification 
tool with fisheries managers improved the model and built 

Figure 6. Box plots of lake area, maximum depth and thermal characteristics in 15 lake classes. Horizontal bar inside each box 
represents the median and box ends denote the interquartile range (i.e., 25th and 75th percentiles).
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Figure 7. Box plots of (A) relative abundance (CPUE) and (B) mean and mean maximum size for four select sportfishes in 15 
terminal lakes classes. Horizontal bar inside each box represents the median and box ends denote the interquartile range (i.e., 
25th and 75th percentiles).
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interest in using it. Although the addition of  manager feed-
back loops did slow our progress, it also created a vigorous 
internal review that improved accuracy and accessibility of 
the final tool. A glance at comments provided by our man-
agers from our vetting exercise (Supplementary Dataset 7) 
reveals how initial classifications based only on model out-
puts can be grossly wrong. Our process also highlighted phil-
osophical tension points of  end users in need of  resolution. 
For example, there was recognition that any classification 
system should seek to minimize the number of  groups while 
also maximizing differences. Another common theme was 
the importance of  maintaining flexibility for decision mak-
ing (i.e., that biologists retain a capacity to deviate and make 

expert decisions when logical). Importantly, it was also the 
biologists and managers who collectively speculated lakes 
needed to be capable of  changing classes as environments 
changed.

One question that has arisen is: how often should lake 
classes and lake class standards be updated? For any agency 
charged with public trust of fisheries and aquatic ecosystem 
management, answers to these questions become partly a 
workload issue and thus strategic and administrative deci-
sions. However, a balanced approach that recognizes long-
term ecological change in lakes and workload limitations 
seems appropriate. For these reasons, we recommend a sys-
tematic updating of lake class standards every 10 years, with 

Figure 8. Temporal trends in abundance of Walleye and Largemouth Bass in lakes identified as temperature transitional.
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a moving 25–30-year data window used to develop and curate 
fisheries standards.

Classification models can always be refined or redesigned 
over time, but resource management is better served by having 
a useful tool, even if  the tool represents a version that might 
not be considered “final,” as long as there is flexibility built into 
the process should future refinements be developed. Perhaps 
the largest hindrance to progress was the temptation for contin-
uous model improvement, analysis of alternative classification 
methods, and integration of new datasets. There are an increas-
ing number of classification tools and statistical approaches 
that can be brought to bear on any classification effort. We en-
courage others to resist these temptations and establish dead-
lines and processes to ensure initial project completion.

CONCLUSIONS
A lack of proper evaluation in fisheries management is 

dangerous (Schupp 1992; Smith et al. 1999). Expensive fish-
eries management strategies that might otherwise be uncov-
ered as failures can be allowed to continue and unintended 
socioecological consequences can result (Pikitch et  al. 2004; 
Eby et al. 2006; Cinti et al. 2010). The approach outlined in 
our paper provides a method for more accurately comparing 
and tracking fisheries dynamics in our inland lakes. Another 
advantage of this approach is that it could be used by agen-
cies to facilitate meaningful dialogue with the public, e.g., to 
calibrate public expectations or refute perceptions of fishery 
quality in different types of ecosystems. Our approach was no-
tably unique in that it accounted for potential changes in lakes 
and their fisheries into the future and afforded biologists am-
ple opportunities to provide input. Comparisons of fisheries 
survey data against lake class quartiles provides a simple and 
fast tool that will result in more informed decision making, es-
pecially in response to changing future ecological conditions.

ACKNOWLEDGMENTS
We thank the large and dedicated groups of Wisconsin 

DNR biologists, managers, technicians, limited term employ-
ees, supportive staff and administrators whose career efforts 
and data were compiled into these tables, graphs, and analyses. 
Tyler Logan assisted with large and specific fish data down-
loads from the fisheries management database. Jordan Read 
provided access to the dataset on modeled lake temperatures, 
and Steve Greb provided access to the long-term remotely 
sensed lake Secchi depth dataset. We thank Matt Diebel for 
access to the lake hydrologic retention time data, and for oth-
er productive conversations and data requests. We thank the 
WDNR fisheries biologists and managers who contributed 
their time and knowledge to refinement and iteration of our 
lake class model and final classification list, especially: David 
Bartz, Jen Bergman, Aaron Cole, Michael Donofrio, Marty 
Engel, Joseph Gerbyshak, Steve Gilbert, Dan Hatleli, Ben 
Heussner, Elliot Hoffman, Steven Hogler, Ryan Koenigs, John 
Kubisiak, Zack Lawson, Chip Long, Cheryl Masterson, Greg 
Matzke, Travis Motl, Adam Nickel, Al Niebur, Nathan Nye, 
Tammie Paoli, Luke Roffler, David Rowe, Jeff Scheirer, Bradd 
Simms, Laura Stremick-Thompson, Max Wolter, Jordan 
Weeks. For additional feedback and efforts, we also thank Steve 
Avelallemant, Tom Cichosz, Paul Cunningham, Jon Hansen, 
Jen Hauxwell, Joe Hennessey, Martin Jennings, Jeff Kampa, 
Alex Latzka, Pat Short, Michael Staggs, Gene Van Dyke, Kurt 
Welke, and any other WDNR professionals we may have in-
advertently left off this list. Finally, we thank members of the 

Midwest Glacial Lakes Partnership, Science and Data Team for 
feedback and suggestions on earlier versions of the classifica-
tion system, especially James Breck (Michigan DNR), Timothy 
Cross (Minnesota [MN] DNR), Gretchen Hansen (WI and 
MN DNR), Peter Jacobson (MN DNR), David Staples (MN 
DNR), and Kevin Wehrly (Michigan DNR). Fiscal sup-
port for this study was provided by a Federal Aid in Sport 
Fish Restoration grant (Grant number F-95-P, study SSFR). 
Partial support for this work was also provided by the National 
Science Foundation (NSF) North Temperate Lakes Long-
Term Ecological Research Grant (award number 1440297) and 
the Peter B. Moyle and California Trout Endowment at UC 
Davis. There is no conflict of interest declared in this article.

REFERENCES
Austen, D. J., and P. B. Bayley. 1993. Enviromental classification of Illinois 

lake and relationships with fish communities. Illinois Natural History 
Survey, Aquatic Ecology Technical Report 93/8, Final Report, F-69-R 
(4–6).

Bajer, P. G., C. J. Chizinski, J. J. Silbernagel, and P. W. Sorensen. 2012. 
Variation in native micro-predator abundance explains recruitment 
of a mobile invasive fish, the Common Carp, in a naturally unstable 
environment. Biological Invasions 14:1919–1929.

Beard, T. D., and J. M. Kampa. 1999. Changes in Bluegill, Black Crappie, 
and Yellow Perch populations in Wisconsin during 1967–1991. North 
American Journal of Fisheries Management 19:1037–1043.

Becker, G. 1983. Fishes of Wisconsin. University of Wisconsin Press, 
Madison.

Bradley, P. S., and U. M. Fayyad. 1998. Refining initial points for k-means 
clustering. Microsoft Research Technical Report Technical MSR-
TR-98-36 98:91–99.

Cahn, A. R. 1929. The effect of carp on a small lake: the carp as a domi-
nant. Ecology 10:271–274.

Carline, R. F. 1977. Effects of hydraulic dredging on the ecology of native 
trout populations in Wisconsin spring ponds. Wisconsin Department 
of Natural Resources, Technical Bulletin Number 98.

Carline, R. F. 1980. Features of successful spawning site development 
for Brook Trout in Wisconsin ponds. Transactions of the American 
Fisheries Society 109:453–457.

Carpenter, S., B. Walker, J. M. Anderies, and N. Abel. 2001. From met-
aphor to measurement: resilience of what to what? Ecosystems 
4:765–781.

Carpenter, S. R., W. A. Brock, G. J. Hansen, J. F. Hansen, J. M. Hennessy, 
D. A. Isermann, E. J. Pedersen, K. M. Perales, A. L. Rypel, and G. G. 
Sass. 2017. Defining a safe operating space for inland recreational 
fisheries. Fish and Fisheries 18:1150–1160.

Cheung, W. W. L., J. L. Sarmiento, J. Dunne, T. L. Frölicher, V. W. Y. Lam, 
M. L. D. Palomares, R. Watson, and D. Pauly. 2013. Shrinking of fish-
es exacerbates impacts of global ocean changes on marine ecosys-
tems. Nature Climate Change 3:254–258.

Chezik, K. A., N. P. Lester, and P. A. Venturelli. 2014. Fish growth and 
degree-days II: selecting a base temperature for an among-
population study. Canadian Journal of Fisheries and Aquatic Sciences 
71:1303–1311.

Cinti, A., W. Shaw, R. Cudney-Bueno, and M. Rojo. 2010. The unintend-
ed consequences of formal fisheries policies: social disparities 
and resource overuse in a major fishing community in the Gulf of 
California, Mexico. Marine Policy 34:328–339.

Eadie, J. M., and A. Keast. 1984. Resource heterogeneity and fish species 
diversity in lakes. Canadian Journal of Zoology 62:1689–1695.

Eaton, J. G., and R. M. Scheller. 1996. Effects of climate warming on fish 
thermal habitat in streams of the United States. Limnology and 
Oceanography 41:1109–1115.

Eby, L. A., W. J. Roach, L. B. Crowder, and J. A. Stanford. 2006. Effects 
of stocking-up freshwater food webs. Trends in Ecology & Evolution 
21:576–584.

Forester, T. S., and J. M. Lawrence. 1978. Effects of Grass Carp and carp on 
populations of Bluegill and Largemouth Bass in ponds. Transactions 
of the American Fisheries Society 107:172–175.

Hansen, G. J. A., J. S. Read, J. F. Hansen, and L. A. Winslow. 2017. Projected 
shifts in fish species dominance in Wisconsin lakes under climate 
change. Global Change Biology 23:1463–1476.



Fisheries | www.fisheries.org    237

Hansen, J., A. L. Rypel, A. Niebur, M. Wolter, T. Motl, K. Welke, D. Hatleli, P. 
Short, J. D. T. Griffin, S. Avelallemant, S. Hewett, J. Nelson, K. Justice, 
F. Pratt, and W. Trudeau. 2015. An Adaptive Management Project 
for Panfish: identifying regulations to increase Bluegill and Black 
Crappie average size in Wisconsin. Wisconsin Department of Natural 
Resources, Technical Report, Madison.

Hartigan, J. A., and M. A. Wong. 1979. Algorithm AS 136: a k-means clus-
tering algorithm. Journal of the Royal Statistical Society Series C 
(Applied Statistics) 28:100–108.

Hipsey, M. R., M. R. Bruce, and D. P. Hamilton. 2013. GLM General Lake 
Model: model overview and user information. The University Of 
Western Australia Technical Manual, Perth.

Howard, R. J., and J. S. Larson. 1985. A stream habitat classification sys-
tem for beaver. The Journal of Wildlife Management 49:19–25.

Isermann, D. A., J. R. Meerbeek, G. D. Scholten, and D. W. Willis. 2003. 
Evaluation of three different structures used for Walleye age esti-
mation with emphasis on removal and processing times. North 
American Journal of Fisheries Management 23:625–631.

Jobling, M. 1981. Temperature tolerance and the final preferendum—
rapid methods for the assessment of optimum growth tempera-
tures. Journal of Fish Biology 19:439–455.

Kelly, F. L., A. J. Harrison, M. Allen, L. Connor, and R. Rosell. 2012. 
Development and application of an ecological classification tool for 
fish in lakes in Ireland. Ecological Indicators 18:608–619.

Lester, N. P., A. J. Dextrase, R. S. Kushneriuk, M. R. Rawson, and P. A. 
Ryan. 2004. Light and temperature: key factors affecting Walleye 
abundance and production. Transactions of the American Fisheries 
Society 133:588–605.

Lester, N. P., T. R. Marshall, K. Armstrong, W. I. Dunlop, and B. Ritchie. 
2003. A broad-scale approach to management of Ontario’s recre-
ational fisheries. North American Journal of Fisheries Management 
23:1312–1328.

Lynch, A. J., B. J. E. Myers, C. Chu, L. A. Eby, J. A. Falke, R. P. Kovach, T. J. 
Krabbenhoft, T. J. Kwak, J. Lyons, and C. P. Paukert. 2016. Climate 
change effects on North American inland fish populations and as-
semblages. Fisheries 41:346–361.

Lyons, J., T. P. Parks, K. L. Minahan, and A. S. Ruesch. 2017a. Evaluation 
of oxythermal metrics and benchmarks for the protection of Cisco 
Coregonus artedi habitat quality and quantity in Wisconsin lakes. 
Canadian Journal of Fisheries and Aquatic Sciences 75:600–608.

Lyons, J., A. L. Rypel, J. F. Hansen, and D. C. Rowe. 2017b. Fillet weight 
and fillet yield: new metrics for the management of panfish and 
other consumption-oriented recreational fisheries. North American 
Journal of Fisheries Management 37:550–557.

Lyons, J., J. Stewart, and M. Mitro. 2010. Predicted effects of climate 
warming on the distribution of 50 stream fishes in Wisconsin, USA. 
Journal of Fish Biology 77:1867–1898.

Maceina, M. J., J. Boxrucker, D. L. Buckmeier, R. S. Gangl, D. O. Lucchesi, 
D. A. Isermann, J. R. Jackson, and P. J. Martinez. 2007. Current status 
and review of freshwater fish aging procedures used by state and 
provincial fisheries agencies with recommendations for future direc-
tions. Fisheries 32:329–340.

Magee, M. R., P. B. Mcintyre, and C. H. Wu. 2018. Modeling oxythermal stress 
for cool-water fishes in lakes using a cumulative dosage approach. 
Canadian Journal of Fisheries and Aquatic Sciences 75:1303–1312.

Mcdonald, C. P., J. A. Rover, E. G. Stets, and R. G. Striegl. 2012. The re-
gional abundance and size distribution of lakes and reservoirs in the 
United States and implications for estimates of global lake extent. 
Limnology and Oceanography 57:597–606.

Molden, D., T. Oweis, P. Steduto, P. Bindraban, M. A. Hanjra, and J. Kijne. 
2010. Improving agricultural water productivity: between optimism 
and caution. Agricultural Water Management 97:528–535.

Mooij, W. M., J. M. Van Rooij, and S. Wijnhoven. 1999. Analysis and com-
parison of fish growth from small samples of length-at-age data: 
detection of sexual dimorphism in Eurasian Perch as an example. 
Transactions of the American Fisheries Society 128:483–490.

Moyle, J. B. 1949. Some indices of lake productivity. Transactions of the 
American Fisheries Society 76:322–334.

Moyle, P. B., and J. P. Ellison. 1991. A conservation-oriented classification 
system for the inland waters of California. California Fish and Game 
77:161–180.

Mumby, P. J., and A. R. Harborne. 1999. Development of a systemat-
ic classification scheme of marine habitats to facilitate regional 
management and mapping of Caribbean coral reefs. Biological 
Conservation 88:155–163.

Munkittrick, K., and D. Dixon. 1989. Use of White Sucker Catostomus com-
mersoni populations to assess the health of aquatic ecosystems ex-
posed to low-level contaminant stress. Canadian Journal of Fisheries 
and Aquatic Sciences 46:1455–1462.

Myers, B. J. E., C. A. Dolloff, J. R. Webster, K. H. Nislow, B. Fair, and A. L. 
Rypel. 2018. Fish assemblage production estimates in Appalachian 
streams across a latitudinal and temperature gradient. Ecology of 
Freshwater Fish 27:363–377.

Oele, D. L., Z. J. Lawson, and P. B. Mcintyre. 2015. Precision and bias in 
aging Northern Pike: comparisons among four calcified structures. 
North American Journal of Fisheries Management 35:1177–1184.

Olin, M., M. Rask, J. Ruuhijärvi, and J. Tammi. 2013. Development and 
evaluation of the Finnish fish-based lake classification method. 
Hydrobiologia 713:149–166.

Oliver, S. K., P. A. Soranno, C. E. Fergus, T. Wagner, L. A. Winslow, C. E. 
Scott, K. E. Webster, J. A. Downing, and E. H. Stanley. 2016. Prediction 
of lake depth across a 17-state region in the United States. Inland 
Waters 6:314–324.

Olmanson, L. G., M. E. Bauer, and P. L. Brezonik. 2008. A 20-year Landsat 
water clarity census of Minnesota’s 10,000 lakes. Remote Sensing of 
Environment 112:4086–4097.

Parks, T. P., and A. L. Rypel. 2018. Predator–prey dynamics mediate 
long-term production trends of Cisco Coregonus artedi in a northern 
Wisconsin lake. Canadian Journal of Fisheries and Aquatic Sciences 
Published Online. https://doi.org/10.1139/cjfas-2017-0302.

Pikitch, E. K., C. Santora, E. A. Babcock, A. Bakun, R. Bonfil, D. O. 
Conover, P. Dayton, P. Doukakis, D. Fluharty, and B. Heneman. 2004. 
Ecosystem-based fishery management. Science 305:346–347.

R Core Team. 2015. R, language and environment for statistical comput-
ing. R Foundation for Statistical Computing. Vienna, Austria.

Rose, K. C., S. R. Greb, M. Diebel, and M. G. Turner. 2017. Annual precip-
itation regulates spatial and temporal drivers of lake water clarity. 
Ecological Applications 27:632–643.

Ryder, R. A. 1977. Effects of ambient light variations on behavior of 
yearling, subadult, and adult Walleyes Stizostedion vitreum vitreum. 
Journal of the Fisheries Board of Canada 34:1481–1491.

Rypel, A. L. 2009. Climate-growth relationships for Largemouth Bass 
Micropterus salmoides across three southeastern USA states. Ecology 
of Freshwater Fish 18:620–628.

Rypel, A. L. 2012. Concordant estimates of countergradient growth varia-
tion in Striped Bass Morone saxatilis using comparative life-history data. 
Canadian Journal of Fisheries and Aquatic Sciences 69:1261–1265.

Rypel, A. L. 2013. The cold-water connection: Bergmann’s rule in North 
American freshwater fishes. The American Naturalist 183:147–156.

Rypel, A. L. 2015. Effects of a reduced daily bag limit on Bluegill size 
structure in Wisconsin lakes. North American Journal of Fisheries 
Management 35:388–397.

Rypel, A. L., and S. R. David. 2017. Pattern and scale in latitude-production 
relationships for freshwater fishes. Ecosphere 8:E01660.

Rypel, A. L., D. Goto, G. G. Sass, and M. J. Vander Zanden. 2018. Eroding 
productivity of Walleye populations in northern Wisconsin lakes. 
Canadian Journal of Fisheries and Aquatic Sciences 75:2291–2301.

Rypel, A. L., J. Lyons, J. D. T. Griffin, and T. D. Simonson. 2016. Seventy-
year retrospective on size-structure changes in the recreational fish-
eries of Wisconsin. Fisheries 41:230–243.

Sass, G. G., A. L. Rypel, and J. D. Stafford. 2017. Inland fisheries habitat 
management: lessons learned from wildlife ecology and a proposal 
for change. Fisheries 42:197–209.

Schupp, D. H. 1992. An ecological classification of Minnesota lakes with 
associated fish communities. Minnesota Department of Natural 
Resources, Section of Fisheries.

Shuter, B. J., M. L. Jones, R. M. Korver, and N. P. Lester. 1998. A gener-
al, life history based model for regional management of fish stocks: 
the inland Lake Trout Salvelinus namaycush fisheries of Ontario. 
Canadian Journal of Fisheries and Aquatic Sciences 55:2161–2177.

Smith, A. D. M., K. J. Sainsbury, and R. A. Stevens. 1999. Implementing 
effective fisheries-management systems-management strategy 
evaluation and the Australian partnership approach. ICES Journal of 
Marine Science 56:967–979.

Tonn, W. M. 1990. Climate change and fish communities: a concep-
tual framework. Transactions of the American Fisheries Society 
119:337–352.

Tonn, W. M., J. J. Magnuson, and A. M. Forbes. 1983. Community analy-
sis in fishery management: an application with northern Wisconsin 
lakes. Transactions of the American Fisheries Society 112:368–377.

https://doi.org/10.1139/cjfas-2017-0302


238    Fisheries | Vol. 44 • No. 5 • May 2019

Van Zuiden, T. M., and S. Sharma. 2016. Examining the effects of climate 
change and species invasions on Ontario Walleye populations: can 
Walleye beat the heat? Diversity and Distributions 22:1069–1079.

Venturelli, P. A., N. P. Lester, T. R. Marshall, and B. J. Shuter. 2010. 
Consistent patterns of maturity and density-dependent growth 
among populations of Walleye Sander vitreus: application of the 
growing degree-day metric. Canadian Journal of Fisheries and 
Aquatic Sciences 67:1057–1067.

Verpoorter, C., T. Kutser, D. A. Seekell, and L. J. Tranvik. 2014. A glob-
al inventory of lakes based on high-resolution satellite imagery. 
Geophysical Research Letters 41:6396–6402.

Vitousek, P. M., H. A. Mooney, J. Lubchenco, and J. M. Melillo. 1997. 
Human domination of earth’s ecosystems. Science 277:494–499.

Wahab, M. A., Z. F. Ahmed, M. A. Islam, M. S. Haq, and S. M. Rahmatullah. 
1995. Effects of introduction of Common Carp Cyprinus carpio (L.), 
on the pond ecology and growth of fish in polyculture. Aquaculture 
Research 26:619–628.

Weber, M. J., and M. L. Brown. 2009. Effects of Common Carp on 
aquatic ecosystems 80 years after “carp as a dominant”: ecologi-
cal insights for fisheries management. Reviews in Fisheries Science 
17:524–537.

Wehrly, K. E., J. E. Breck, L. Wang, and L. Szabo-Kraft. 2012. A landscape-
based classification of fish assemblages in sampled and unsam-
pled lakes. Transactions of the American Fisheries Society 
141:414–425.

Welsford, D. C., and J. M. Lyle. 2005. Estimates of growth and compari-
sons of growth rates determined from length-and age-based models 
for populations of Purple Wrasse Notolabrus fucicola. Fishery Bulletin 
103:697–711.

Winfield, I. J., C. Baigún, P. A. Balykin, B. Becker, Y. Chen, A. F. Filipe, Y. 
V. Gerasimov, A. L. Godinho, R. M. Hughes, and J. D. Koehn. 2016. 
International perspectives on the effects of climate change on inland 
fisheries. Fisheries 41:399–405.

Winslow, L. A., G. J. A. Hansen, J. S. Read, and M. Notaro. 2017. Large-scale 
modeled contemporary and future water temperature estimates for 
10774 Midwestern U.S. Lakes. Scientific Data 4:170053

Winslow, L. A., J. S. Read, G. J. A. Hansen, and P. C. Hanson. 2015. Small 
lakes show muted climate change signal in deepwater temperatures. 
Geophysical Research Letters 42:355–361.

Wisconsin Department of Natural Resources. 2009. Wisconsin Lakes. 
PUB-FH-800, Madison.

Wisconsin Department of Natural Resources. 2014. Wisconsin’s 2014 
Water Quality Report to Congress. Integrated Report Of Water 
Quality – Executive Summary, DNR PUB-WY-011 2014, Madison.

SUPPORTING INFORMATION
Additional supplemental material may be found online in 

the Supporting Information section at the end of the 
article.


